tkLayout - A Tracker Layout Modeling Tool
Evaluation of tracker performances

How to evaluate performances of a (tracker) detector geometry?

- Create detailed MC simulation
- Optimise event reconstruction algorithms
- Estimate the track parameter resolution from first principles
- tkLayout

Thorough
- Time consuming

Time consuming
What is tkLayout?

- Tool to evaluate tracker layouts
- Places modules in 3D space
- Assigns material to the volumes
- Makes an a priori estimate on tracking performances

- Standalone
- Lightweight
- Fast
- Small number of design parameters to create geometry

- Compare different detector layouts
- Fair comparison of layouts with a priori estimate of performance (occupancy, tracking and trigger approximate efficiencies, approximate financial cost, power consumption)
- Narrow down the parameter space
- Pre-optimized designs
- Does not depend on optimised reco algorithms

- IS NOT a replacement for the MC simulation
 - estimate impact on trigger
 - physics channels
 - occupancy
 - efficiency
 -
Performance Estimate

A priori error estimation

- **No Monte Carlo**
 - The accuracy of the track parameters derived from a fitting procedure
 - 2 uncorrelated fits: a circle in \((r, \varphi)\), line in \((r,z)\) plane
 - No fit actually done (minimisation of \(\chi^2\) can be done analytically)

- **Ingredients:**
 - Error propagation
 - Sensor resolution (measurement error)
 - Multiple scattering (treated as a correlated a measurement error)

Validation and first studies

- **Detailed studies done by modeling current CMS tracker & comparing with full simulation**
 - [Mersi ACES](#)

- **Layout studies**
 - [Mersi FNAL](#)
Defining geometry

Small set of design parameters:
- large-scale structure of tracker (number of layers/discs, volume boundaries)
- Details of modules used in the tracker (type of modules, dimensions, distance between modules, size of trigger windows...)
- Materials used in the tracker (active, support, services)
Defining Material

Material:
- Active
- Support
- Services

✦ Assigned to a module without any detail about geometric distribution of material within the module itself

✦ Material assigned to a module depends on its position
✦ Each material is additionally defined as:
 - Local
 - Exiting (services running out of modules)

Material on active element + Material on services automatically routed
2S

Sensor: 94.183 × 102.7
Active: 91.44 × 100.5

- 2 strip sensors
- 960 strips x 2 segments
- long strip ~46mm
- 90 μm pitch
- ~1.5mm macro pixel
- 8 ROCs per segment
- \(p_T \) information
1 strip sensor, 1 pixel sensor
- 960 strips x 2 segments
- Short strip ~24 mm
- 960 x 16 pixels x 2 segments
- ~1.5mm macro pixel
- 8 ROCs per segment
- $p_T + z$ information
- Pixels must be cooled inside the module
Strip/Pixel module with *Vertical* interconnection

- Single chip connected to top and bottom sensors
- Same idea as PS modules but with vertically distributed electronics
- Major development needed (active sensor edge processing, wafer bonding)
How to filter the low p_T tracks fast?

Measure the track crossing angle orthogonal to a layer’s surface. This is directly related to the p_T of the charge particle:

- The highest-p_T tracks will cross almost orthogonal to the surface.
- The low-p_T tracks will cross at a wider angle.
- The $R\phi$ distance travelled between two sensors in a stack is of a similar size to the pitch of a single pixel.
- Hence by performing a nearest-neighbour search in the inner sensor of a stack using a seed hit in the outer sensor, one can isolate particles with a high transverse momentum.

Optimise selection windows and (or) sensors spacing to obtain consistent p_T selection.
High Luminosity LHC tracker layouts

- **LongBarrel**
 - Extend the Barrel into the EndCap region
 - EndCap “hole” covered with a mezzanine layers
 - Uniform separation between modules
 - Uniform trigger window size

- **BarrelEndcap**
 - Variable separation between the sensors
 - Variable size of the acceptance window
 - The optimal values are obtained analysing efficiency and low-pt rejection.
<table>
<thead>
<tr>
<th>Feature</th>
<th>LongBarrel</th>
<th>BarrelEndcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Tracking*</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Vertexing</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Local p_T measurement</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Offline forward tracking</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Material budget</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

BE is not L1-oriented, but single track performance is comparable to the LB one
G4 Simulation

Examples from the evaluation of the BarrelEndcap configuration

- tkLayout has possibility to generate geometry files usable by G4 i.e. CMS software (CMSSW)
 - Validation of tkLayout
 - Detail performance evaluation of the tracker
Examples from the evaluation of the BarrelEndcap configuration
Examples from the evaluation of the LongBarrel configuration
Ongoing work/Future Plans

- **Improve export of geometry files to CMSSW**
 - Fix strip pitch (now not correctly exported)

- **Tracking in the (very) forward region**
 - Shoot tracks with constant p and produce error curves

- **Support for slanted (diagonally placed) modules**
 - New module class to support the new features
 - Cylindrical service volumes
 - Barrel + Slanted layout

- **Implement current pixel detector model**
 - New module type

- **Continue the study on the Hough transform algorithm for track reconstruction**
tkLayout is a free generic tool

- Fast running
- Simple
- Has been thoroughly validated
- No dependence on reco algorithm tuning
- Needs well understood model of materials to give good output
- Gives fair comparison between different geometry models
- Does not replace full simulation studies
- Helps in selection of a small number of optimised options for study with full simulation