recent layout studies with COUCLE

Stefano Mersi FNAL Workshop on CMS upgrade 2011 7 November 2011 What is tkLayout Models studied Layout comparison Properties Tracking Tracking trigger potential New feature Conclusions

is a **standalone** tool to evaluate tracker layouts

places **modules** in 3D space

assigns **material** to the volumes

can be used to **optimize a layout**

creates xml files for CMSSW geometry makes an estimate of tracking performance

or to make a quantitative comparison between layouts

Developed by Nicoletta De Maio, Stefano Mersi

creates a 3D model of the layout (with **material**)

active support services

4

tklayout material

Services cooling pipes optical fibres twisted pairs

on the module

tklayout material

Material on + Material for services active elements automatically routed

Performance estimate

A priori error estimation No Monte Carlo No fit actually done

Ingredients:

Error propagation Sensor resolution (measurement error) Multiple scattering (treated as a correlated a measurement error)

Performance estimate

distance from origin

Covariance matrix of the measured hit coordinates:

$$\sigma_n^2 = \frac{p^2}{12}$$

$$\sigma_{n,m} = \langle y_n y_m \rangle = \sum_{i=1}^{n-1} (x_m - x_i) (x_n - x_i) \langle \theta_i^2 \rangle$$

Method validated against the full CMSSW simulation

Performance estimate

this method was validated modelling current CMS tracker & comparing with full simulation

What is tkLayout Layout comparison Models studied Properties Tracking Tracking trigger potential New feature Conclusions

The study performed

- To have a quantitative estimation of the impact of layout strategies on the detector performance
 - Traditional layout (Barrel + Endcap)
 - Long-barrel layout
 - Stacked layers

Use a consistent set of assumption:

- Material
- Detector properties
- Estimation method

Modules used: Strip (2S) and Pixel+Strip (PS)

- PS detectors was chosen because we have a reasonably detailed idea on how to integrate them in the system
- Modules are quite "light", so that the study is not biased (too much) by the material in PS layers
- All the layouts produced are reasonably lighter than the current one (in the central region)

What is tkLayout Layout comparison **Models studied** Properties Tracking Tracking trigger potential New feature Conclusions

2 Strip pT module

2S: 2 paired strip sensors

- Works well in the outer part
- Sandwich of strip sensors
- 5 cm long strips
- Measuring pT locally
- Trigger output
- 90 µm pitch

GBT + DC/DC for each module

~ 0.61 g/cm²

Reasonably detailed model of material

Pixel + Strip pT module

PS: Strip sensor paired with pixel

- Can work in the inner part
- Provides z information in the trigger
- Simple interconnection technology
- Relatively lower power & mass
- Tunable sensors spacing
- = 100 µm pitch
- = Less than 10 cm × 5 cm

strip sensor Pixel chip Pixel sensor ~ 1.1 g/cm²

Barrel + End-cap layout

Barrel + End-cap layout

A traditional barrel + **endcap** geometry used as reference in this study

Long barrel layout

A long barrel example obtained extending the barrel into the end-cap region with the same modules

Same assumptions: no tuning of the material model

End-cap "hole" covered with mezzanine layers

Stacked-layer layout

A stacked long barrel obtained again with the same modules and material description

Stacked-layer layout (2)

A variant of the **stacked** long barrel with a more balanced position of the second stack

Summary

What is tkLayout Layout comparison **Models studied Properties** Tracking Tracking trigger potential New feature Conclusions

25

 $\Delta \eta = 0.8$ Roughly same number of tracks expected $\Delta \eta = 0.7$ for trigger used (0 \rightarrow 2.1)

Nuclear interactions

Radiation length

What is tkLayout Layout comparison **Models studied Properties** Tracking Tracking trigger potential New feature Conclusions

Tracking resolution

Transverse momentum (10 GeV)

Tracking resolution

Transverse momentum (100 GeV)

What is tkLayout Layout comparison **Models studied Properties Tracking** Tracking trigger potential New feature Conclusions

Transverse momentum (10 GeV)

Transverse momentum (100 GeV)

Trigger resolution potential

Transverse impact parameter

Longitudinal impact parameter

Number of fibres

Assuming 1 GBT/module About **40000 installed fibres**

Partial conclusions (1/2)

- Trigger pT
 - Central region is basically insensitive to the layout
 - Intermediate region favours the non-stacked barrel-only
 - Forward region clearly favours barrel-only layouts at low pT
 2% → 4% @ 10 GeV
 similar @ 100 GeV

Trigger – longitudinal impact parameter

- z resolution of around 7mm achievable in central and intermediate regions with all the studied layouts
- Forward region prefers stacked, then barrel-only, then endcap layouts
 (7 → 8 → 10 mm resolution)

Partial conclusions (2/2)

= Tracking

- **Central** and **intermediate** regions ($\eta = 1.6 \rightarrow 2.4$) have very similar performance
- Forward region (η = 1.6 → 2.4) favours the end-cap layout
 1.4% → 2.1% @ 10 GeV
 3% → 5% @ 100 GeV
- Other major features
 - **Double amount** of material in the **forward** region for the barrel-only layouts (as seen by tracks)
 - Larger number of modules for the barrel-onlies

+22% for Long-barrel+38% for Long-barrel stacked+54% for Long-barrel stacked 2

 Multiplicity of fibres not compatible with the scheme of 1 link/module for barrel layouts with available fibres What is tkLayout Layout comparison **Models studied Properties Tracking Tracking trigger potential** New feature Conclusions

pT module parameter tuning

- A new feature was added to tkLayout
- Computing the probability of a track to fire a high-pT hit on each module
- Depends on many parameters:

Sensor separation tunable High-pT search window parameters pT of the track Position of the module Strip pitch Luck

Configuration tuning

- With this feature it is possible to tune the search window and sensor spacing of a given layout
- Tuning procedure used:
 - Main goal: reject 1 GeV/c tracks (better than 100:1)
 - Secondary goal: maximise efficiency for 2 GeV/c tracks
- Exercise completed for two layouts

End-cap layout (shown before)

An all-strip layout (with non-pT stereo modules in the inner part)

Configuration tuning

What is tkLayout Layout comparison **Models studied Properties Tracking Tracking trigger potential New feature** Conclusions

Conclusions

- This is one input for the strategy choice, together with (e.g.):
 - Strategy for building a trigger, detector integration, ...
- When assumptions change, also the predicted performance is different, but the relation between choices is stable
- Outcome of this study:
 - **Trigger pT**: favours the barrel-onlies in the **forward**, especially for low pT
 - Trigger z0: ~ 7 mm achievable (slightly worse for non-stacked LB and endcap in the forward)
 - Tracking pT: forward region favours the end-cap layout
 - Double amount of material in the forward region for the barrel-onlies layouts (as seen by tracks)
 - Larger number of modules for the barrel-onlies (+22% to +54%, not compatible with 1 link/module)
- New feature: pT-finding efficiency estimation
 - Two layouts already tuned, more to come
 - Few module flavours (4 spacings) should allow a good rejection of 1 GeV/c tracks, with full efficiency already @ 2 GeV/c
 - Output fed back to CMSSW simulations

